
Xiaomi Logistics Service Quality Prediction 

1 Background 

1.1 Business background 

With the gradual increase in the categories of goods sold in Xiaomi Mall, the gradual increase in the coverage of Xiaomi's 

logistics network, and the continued impact of the epidemic, online shopping is playing an increasingly important role in our 

daily lives. When purchasing products online at Xiaomi Mall and using Xiaomi logistics services, we usually decide whether 

to purchase products by browsing the service reviews. However, the quality of reviews on Xiaomi's logistics services is 

currently uneven, and there are even malicious praise or malicious negative reviews, which seriously affects the customer's 

shopping experience. Therefore, the prediction of review quality has become one of the indispensable topics for Xiaomi 

Logistics. If the quality of service reviews can be automatically evaluated, it will be possible to avoid showing low-quality 

reviews based on the predicted results. In this case, we will predict the review quality in the real scene of Xiaomi Logistics 

based on the integrated learning method. 

1.2 Concept of Net Promoter Score 

NPS (Net Promoter Score), also known as Net Promoter Score, or word of mouth, is an index that measures the likelihood 

that a certain customer will recommend a certain company or service to others. It is the most popular customer loyalty 

analysis indicator, focusing on how customer reputation affects business growth. By closely tracking the Net Promoter Score, 

companies can make themselves more successful. 

 

The net recommendation value is equal to the percentage of recommenders minus the percentage of critics. 

Net Promoter Value (NPS) = (Number of Recommenders/Total Number of Samples) × 100%-(Number of Detractors/Total 

Number of Samples) × 100% 

 

Determining your Net Promoter Score is straightforward: ask your customers a question-"Will you be willing to recommend 

the "company name" to your friends or colleagues?" 

According to the level of willingness to recommend, let customers score between 0-10, and then you build 3 categories of 

customer loyalty based on the score: 

• Referrers (scores between 9-10): People with fanatical loyalty who will continue to buy and recommend to others. 

• Passive (score between 7-8): Overall satisfaction but not fanatical, will consider other competitors' products. 

• Detractor (score between 0-6): Dissatisfied with the use or not loyal to your company. The logic of the NPS 

calculation formula is that recommenders will continue to buy and recommend to others to accelerate your growth, 

while critics can destroy your reputation and prevent you from growing in a negative word of mouth. 

NPS scores above 50% are considered good. If the NPS score is between 70-80%, it proves that your company has a group of 

highly loyal and good customers. The survey shows that the NPS value of most companies still fluctuates between 5-10%. 

 



2 Service quality prediction model 

We extracted reviews on Xiaomi logistics services from the official website of Xiaomi Mall, including 57,039 comments in 

the training set and 11,208 comments in the test set. Based on the above data, through the realization of two integrated 

learning algorithms (Bagging and AdaBoost.M1), to build the Xiaomi logistics service quality prediction model. Among 

them, the base classifier uses SVM and decision tree. Therefore, a total of four sets of results need to be compared, and AUC 

is used as the evaluation index: 

• Bagging + SVM 

• Bagging + decision tree 

• AdaBoost.M1 + SVM 

• AdaBoost.M1 + decision tree 

2.1 Data extraction 

• Extract data from the test set and training set of the model 
import pandas as pd  
import numpy as np 
 
train_df = pd.read_csv(' /Users/chan/Documents/data/train.csv', sep='\t') 
test_df = pd.read_csv(' /Users/chan/Documents/data/test.csv', sep='\t') 
len(train_df), len(test_df) 

Output: (57039, 11208) 

• View the first 5 rows of data 
train_df.head() 

  
 
test_df.head() 

 

reviewerID asin reviewText overall votes_up votes_all label

0 7885 3901 First off, allow me to correct a common mistak... 5.0 6 7 0

1 52087 47978 I am really troubled by this Phone and Compute... 3.0 99 134 0

2 5701 3667 A near-perfect package of a downright glo... 4.0 14 14 1

3 47191 40892 Keep your expectations low. Really really low... 1.0 4 7 0

4 40957 15367 "they dont make em like this no more..."well..... 5.0 3 6 0

Id reviewerID asin reviewText overall

0 0 82947 37386 I REALLY wanted this series but I am in SHOCK ... 1.0

1 1 10154 23543 I have to say that this is a work of art for m... 4.0

2 2 5789 5724 Mi 12 is certainly the most controversal smar... 3.0

3 3 9198 5909 I love this earphones...? Well, of course i... 5.0

4 4 33252 21214 Even though I previously bought the Redmi Ser... 5.0



2.2 Feature extraction 

Process text features by extracting "Excellent" and put together the total score features 
import scipy 
import sklearn 
from sklearn.feature_extraction.text import TfidfVectorizer 
 
# tf/idf Processing text features 
word_model = TfidfVectorizer(stop_words='Excellent') 
train_X = word_model.fit_transform(train_df['reviewText']) 
test_X = word_model.transform(test_df['reviewText'])  
 
# Combine the total score feature 
train_X = scipy.sparse.hstack([train_X, train_df['overall'].values.reshape((-1, 1)) / 5]) 
test_X = scipy.sparse.hstack([test_X, test_df['overall'].values.reshape((-1, 1)) / 5]) 

2.3 Ensemble algorithm implementation 

• SVM and decision tree algorithm call, and probability correction 
from sklearn import svm 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.naive_bayes import BernoulliNB 
from sklearn.calibration import CalibratedClassifierCV 
 
def construct_clf(clf_name): 
    clf = None 
    if clf_name == 'SVM': 
        clf = svm.LinearSVC() 
    elif clf_name == 'DTree' : 
        clf = DecisionTreeClassifier(max_depth=10, class_weight='balanced') 
    elif clf_name == 'NB' : 
        clf = BernoulliNB() 
    clf = CalibratedClassifierCV(clf, cv=2, method='sigmoid')  # Probability correction 
    return clf 

 

• Bagging algorithm implementation: 
class Bagging(object): 
    def __init__(self, clf, num_iter): 
        self.clf = clf  # Classifier object 
        self.num_iter = num_iter  # Number of bagging classifiers 
         
    def fit_predict(self, X, Y, test_X): 



        result = np.zeros(test_X.shape[0])  # Record the prediction results of the test set 

        train_idx = np.arange(len(Y)) 
        for i in range(self.num_iter): 
            sample_idx = np.random.choice(train_idx, size=len(Y), replace=True)  # Bootstrap 
            sample_train_X = X[sample_idx] 
            sample_train_Y = Y[sample_idx] 
            self.clf.fit(sample_train_X, sample_train_Y) 
            print('Model {:>2d} finish!'.format(i)) 
            predict_proba = self.clf.predict_proba(test_X)[:, 1] 

            result += predict_proba  # Accumulate the predicted probabilities of different classifiers        

  result /= self.num_iter  # Take the average (vote) 
        return result 

 

• AdaBoost.M1 algorithm implementation： 

class AdaBoostM1(object): 
    def __init__(self, clf, num_iter): 
        self.clf = clf  # Classifier object 
        self.num_iter = num_iter  # Number of iterations 
         
    def fit_predict(self, X, Y, test_X): 

        result_lst, beta_lst = list(), list()  # Record the prediction results and voting weight of 

each iteration         

  num_samples = len(Y) 

        weight = np.ones(num_samples)  # Sample weight, note that the sum should be num_samples        

  for i in range(self.num_iter): 
            self.clf.fit(X, Y, sample_weight=weight)  # Weighted fit 
            print('Model {:<2d} finish!'.format(i)) 

            train_predict = self.clf.predict(X)  # Training set prediction results 

            error_flag = train_predict != Y  # Predict the location of the error 
            error = weight[error_flag].sum() / num_samples  # Calculation error rate 
            if error > 0.5: 
                break 
            beta = error / (1 - error) 

            weight *= (1.0 - error_flag) * beta + error_flag  # Adjust the weight, multiply beta by 

the correct position, and the wrong position is still the original 



            weight /= weight.sum() / num_samples  # Normalize so that the weight sum is equal to 

num_samples             

      beta_lst.append(beta) 
            predict_proba = self.clf.predict_proba(test_X)[:, 1] 
            result_lst.append(predict_proba) 
        beta_lst = np.log(1 / np.array(beta_lst)) 

        beta_lst /= beta_lst.sum()  # Normalized voting weight 

        print('\nVote Weight:\n', beta_lst) 

        result = (np.array(result_lst) * beta_lst[:, None]).sum(0)  # Weighted sum of prediction 

results for each round 

        return result 

2.4 Test and generate results 

Test the following 4 groups of prediction models and generate results, and finally get voting weights. 

• Bagging + SVM 

• Bagging + decision tree 

• AdaBoost.M1 + SVM 

• AdaBoost.M1 + decision tree 
np.random.seed(0) 
clf = construct_clf('SVM')  # DTree, SVM, NB 
# runner = Bagging(clf, 10) 
runner = AdaBoostM1(clf, 10) 
y_predict = runner.fit_predict(train_X.tocsr(), train_df['label'], test_X.tocsr()) 

 
• Create submission documents and derive AUC evaluation indicators 

# Generate submission file 

result_df = pd.DataFrame() 
result_df['Id'] = test_df['Id'].values 
result_df['Predicted'] = y_predict 
result_df.to_csv('./result.csv', index=False) 

 

 



3 Conclusion 

From the above training results, it can be concluded that the prediction accuracy rate of using SVM+Bagging or 

SVM+AdaBoost.M1 is high, and this model can be used to continue to predict the quality of Xiaomi logistics service. 


