Xiaomi Logistics Service Quality Prediction

1 Background

1.1 Business background

With the gradual increase in the categories of goods sold in Xiaomi Mall, the gradual increase in the coverage of Xiaomi's
logistics network, and the continued impact of the epidemic, online shopping is playing an increasingly important role in our
daily lives. When purchasing products online at Xiaomi Mall and using Xiaomi logistics services, we usually decide whether
to purchase products by browsing the service reviews. However, the quality of reviews on Xiaomi's logistics services is
currently uneven, and there are even malicious praise or malicious negative reviews, which seriously affects the customer's
shopping experience. Therefore, the prediction of review quality has become one of the indispensable topics for Xiaomi
Logistics. If the quality of service reviews can be automatically evaluated, it will be possible to avoid showing low-quality
reviews based on the predicted results. In this case, we will predict the review quality in the real scene of Xiaomi Logistics

based on the integrated learning method.
1.2 Concept of Net Promoter Score

NPS (Net Promoter Score), also known as Net Promoter Score, or word of mouth, is an index that measures the likelihood
that a certain customer will recommend a certain company or service to others. It is the most popular customer loyalty
analysis indicator, focusing on how customer reputation affects business growth. By closely tracking the Net Promoter Score,

companies can make themselves more successful.

The net recommendation value is equal to the percentage of recommenders minus the percentage of critics.
Net Promoter Value (NPS) = (Number of Recommenders/Total Number of Samples) x 100%-(Number of Detractors/Total
Number of Samples) x 100%

Determining your Net Promoter Score is straightforward: ask your customers a question-"Will you be willing to recommend
the "company name" to your friends or colleagues?"

According to the level of willingness to recommend, let customers score between 0-10, and then you build 3 categories of
customer loyalty based on the score:

e Referrers (scores between 9-10): People with fanatical loyalty who will continue to buy and recommend to others.

e Passive (score between 7-8): Overall satisfaction but not fanatical, will consider other competitors' products.

e Detractor (score between 0-6): Dissatisfied with the use or not loyal to your company. The logic of the NPS
calculation formula is that recommenders will continue to buy and recommend to others to accelerate your growth,
while critics can destroy your reputation and prevent you from growing in a negative word of mouth.

NPS scores above 50% are considered good. If the NPS score is between 70-80%, it proves that your company has a group of

highly loyal and good customers. The survey shows that the NPS value of most companies still fluctuates between 5-10%.



2 Service quality prediction model

We extracted reviews on Xiaomi logistics services from the official website of Xiaomi Mall, including 57,039 comments in
the training set and 11,208 comments in the test set. Based on the above data, through the realization of two integrated
learning algorithms (Bagging and AdaBoost.M1), to build the Xiaomi logistics service quality prediction model. Among
them, the base classifier uses SVM and decision tree. Therefore, a total of four sets of results need to be compared, and AUC
is used as the evaluation index:

e Bagging + SVM

e Bagging + decision tree

e AdaBoostM1 + SVM

e AdaBoost.M1 + decision tree
2.1 Data extraction

e  Extract data from the test set and training set of the model

import pandas as pd

import numpy as np

train_df = pd.read_csv(' /Users/chan/Documents/data/train.csv', sep='\t"')
test_df = pd.read_csv(' /Users/chan/Documents/data/test.csv', sep="\t')
len(train_df), len(test_df)

Output: (57039, 11208)

e  View the first 5 rows of data
train_df.head()

reviewerlD asin reviewText overall votes_up votes_all label
0 7885 3901 First off, allow me to correct a common mistak... 5.0 6 7 0
1 52087 47978 | am really troubled by this Phone and Compute... 3.0 99 134 0
2 5701 3667 A near-perfect package of a downright glo... 4.0 14 14 1
3 47191 40892 Keep your expectations low. Really really low... 1.0 4 7 0
4 40957 15367 "they dont make em like this no more..."well..... 5.0 3 6 0

test_df.head()

Id reviewerlD asin reviewText overall
0 0 82947 37386 | REALLY wanted this series but | am in SHOCK ... 1.0
1 1 10154 23543 | have to say that this is a work of art for m... 4.0
2 2 5789 5724 Mi 12 is certainly the most controversal smar... 3.0
3 3 9198 5909 | love this earphones...? Well, of course i... 5.0
4 4 33252 21214 Even though | previously bought the Redmi Ser... 5.0



2.2 Feature extraction

Process text features by extracting "Excellent" and put together the total score features
import scipy
import sklearn

from sklearn.feature_extraction.text import TfidfVectorizer

word_model = TfidfVectorizer(stop_words='Excellent")
train_X = word_model.fit_transform(train_df['reviewText'])
test_X = word_model.transform(test_df['reviewText'])

train_X = scipy.sparse.hstack([train_X, train_df['overall'].values.reshape((-1, 1)) / 51)
test_X = scipy.sparse.hstack([test_X, test_df['overall'].values.reshape((-1, 1)) / 51)

2.3 Ensemble algorithm implementation

e SVM and decision tree algorithm call, and probability correction
sklearn import svm
sklearn.tree import DecisionTreeClassifier
sklearn.naive_bayes import BernoulliNB
sklearn.calibration import CalibratedClassifierCV

construct_clf(clf_name):
clf =
if clf_name == 'SVM':
clf = svm.LinearSVC()
elif clf_name == 'DTree'
clf = DecisionTreeClassifier(max_depth=10, class_weight='balanced')
elif clf_name == 'NB'
clf = BernoulliNB()
clf = CalibratedClassifierCV(clf, cv=2, method='sigmoid')
return clf

e Bagging algorithm implementation:
Bagging(object):
__init_ (self, clf, num_iter):
self.clf = clf

self.num_iter = num_iter

fit_predict(self, X, Y, test_X):




result = np.zeros(test_X.shapel0])

train_idx = np.arange(len(Y))

for i in range(self.num_iter):

sample_idx = np.random.choice(train_idx, size=len(Y), replace=

sample_train_X = X[sample_idx]

sample_train_Y = Y[sample_idx]
self.clf.fit(sample_train_X, sample_train_Y)
print('Model finish!'.format(i))
predict_proba = self.clf.predict_proba(test_X)[:, 1]

result += predict_proba

result /= self.num_iter

return result

e AdaBoost.M1 algorithm implementation:

AdaBoostM1(object):
__init_ (self, clf, num_iter):
self.clf = clf
self.num_iter = num_iter

fit_predict(self, X, Y, test_X):

result_lst, beta_lst = list(), list()

num_samples = len(Y)
weight = np.ones(num_samples)
for i in range(self.num_iter):

self.clf.fit(X, Y, sample_weight=weight)
print('Model finish!'.format(i))
train_predict = self.clf.predict(X)

error_flag = train_predict != Y

error = weightl[error_flagl.sum() / num_samples
if error > 0.5:

break

beta = error / (1 - error)

weight %= (1.0 - error_flag) * beta + error_flag




weight /= weight.sum() / num_samples

beta_lst.append(beta)
predict_proba = self.clf.predict_proba(test_X)[:, 1]
result_lst.append(predict_proba)

beta_lst = np.log(1l / np.array(beta_lst))

beta_lst /= beta_lst.sum()
print('\nVote Weight:\n', beta_lst)

result = (np.array(result_lst) * beta_lstl[:, 1).sum(0)

return result

2.4 Test and generate results

Test the following 4 groups of prediction models and generate results, and finally get voting weights.
e Bagging + SVM
e Bagging + decision tree
e AdaBoost.M1 + SVM
e AdaBoost.M1 + decision tree

np.random.seed(0)
clf = construct_clf('SvM")

runner = AdaBoostM1(clf, 10)
y_predict = runner.fit_predict(train_X.tocsr(), train_df['label'], test_X.tocsr())

Model @ finish!
Model 1 finish!
Model 2 finish!
Model 3 finish!

Vote Weight:
[0.47013022 0.35834806 0.17152172]

e  (Create submission documents and derive AUC evaluation indicators

result_df = pd.DataFrame()
result_df['Id'] = test_df['Id'].values

result_df['Predicted'] = y_predict

result_df.to_csv('./result.csv', index=

Method Base +Bagging +AdaBoost.M1

DTree 0.74 0.77 0.76

SVM 0.78 0.81 0.81



3 Conclusion

From the above training results, it can be concluded that the prediction accuracy rate of using SVM+Bagging or

SVM+AdaBoost.M1 is high, and this model can be used to continue to predict the quality of Xiaomi logistics service.



